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The mean square end-to-end distances (h2(c)) of confined random walks (RW) and confined self-avoiding 
walks (SAW) have been obtained by means of Monte Carlo simulation on a simple cubic lattice. The geometry 
of confinement considered includes: a cubic box'or a sphere, an infinite tube of square or circular cross- 
section, and a gap between two parallel infinite plates, corresponding to confinements in three, two and one 
dimensions respectively. The (h 2 (c)) value of a confined RW chain decreased monotonically with decreasing 
confinement size and approached to a value of 0, -~ and 2 of (h2(0)) for three-, two- and one-dimensional 
confinement respectively, where (h2(0)) is the mean square end-to-end distance of a RW chain without any 
confinement. A SAW chain confined in a cubic box also showed a continuous decrease of (h2(c)) with 
decreasing confinement size. However, a SAW chain confined in two and one dimensions showed a minimum 
value of (h2(c))/(h2(O)) with decreasing confinement size. 

(Keywords: Monte Carlo simulation; mean square end-to-end dlstance; confined random walk; confined self-avoiding walk) 

I N T R O D U C T I O N  

Random walk has been a classical model for the 
conformation of a flexible polymer chain in solution and 
for the theory of rubber elasticity 1'2. Wiedmann et al. 3 
were the first to consider the case of confined random 
walk and attempted an analytical solution for the end-to- 
end distance by solving the diffusion equation. The 
problem of confined random walk has been of interest 
since the development of gel permeation chromatog- 
raphy. Casassa 4 obtained the entropy change of a 
random-walk chain confined in a sphere, in an infinite 
tube, and in the gap between two parallel infinite plates. 
De Gennes s has also discussed such problems. Recently 
one of the present authors has considered the confined 
random walk in a sphere as a model for the effect of 
interchain interaction on the coil dimension of polymer 
molecules in solution and thus to explore the 
concentration dependence of the coil dimension in 
semidilute solutions 6. As Monte Carlo simulation is a 
convenient means to get the coil dimension of a single 
chain 7 we shall report here the results of such 
computation for the cases of a random-walk (RW) chain 
and a self-avoiding-walk (SAW) chain on a simple cubic 
lattice confined in a cubic box or a sphere, in an infinite 
tube, and between two parallel infinite plates of various 
sizes of confined space. 

U N C O N F I N E D  R A N D O M  WALK 

A simple cubic lattice with lattice spacing of unit length 
was used. Following every walk step the following step 
was assumed to have five possible choices of direction, 
with the probability of a right-angle turn being w, that of a 

straight forward step being 1 - w and that of a backward 
step being zero. As there are four possible cases of a right- 
angle turn, each will have a probability w/4. A sequence of 
pseudo-random numbers representing the five possible 
choices produced by a computer was used to generate the 
walk. For such a RW it has been shown that the mean 
square end-to-end distance of N steps is given by 8: 

(h2(0)) = N (2 /w  - 1 ) -  2(1 - w)/w 2 ~_ N ( 2 / w -  1) (1) 

Results of Monte Carlo simulation of such a walk of 1000 
steps with the value ofw taken as 1, ~, 2 1 ~, ~ and ¼ are shown 
in Table 1. The values of (h2(0)) averaged over 100-I000 
specimen walks are compared with the value given by 
equation (1). The agreement is within a few per cent for 
1000 specimen walks. The convergence of (h2(0)) of 1000 
steps with increasing number of walk specimens is shown 

Table 1 The mean square end-to-end distances of 1000 RW steps 
averaged over n specimen walks obtained by Monte Carlo simulation on 
a five-choice cubic lattice 

4 2 1 ¼ n w=l 5 3 2 

100 982 1490 1957 2746 5966 
200 1001 1424 1989 3140 6727 
300 945 1415 2006 3120 6627 
400 953 1448 1956 3064 6816 
500 954 1479 1903 3064 6763 
600 977 1537 1906 3030 6718 
700 976 1533 1899 3020 6840 
800 991 1528 1863 2981 6738 
900 986 1521 1872 2985 6817 

1000 973 1521 1875 2984 6814 

Eqn.(1) 1000 1500 2000 3000 7000 
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in Figure 1. The components of (h~(0)), owing to 
symmetry, are evidently equal to each other and 

(h2(0)) -~ (h2(0)) -~ (h2(0)) = (h2(0))/3 (2) 

CONFINED RANDOM WALK 

For confined random walks, w =~ was adopted. When a 
step reached the confinement wall the following step was 
made to go back to the position of the previous step. The 
number of steps taken was 500-5000 and the number of 
specimen walks was 100-1000. For the comparison of 
(h 2 (c)) of RW confined in three, two and one dimensions 
of various sizes, the same sequence of pseudo-random 
numbers generating the walk was used. 

Results of (h 2 (c)) from Monte Carlo simulation of RW 
chains confined in three, two and one dimensions with 
varying size of confinement Di, j = 3, 2, 1 respectively, are 
shown in Figure 2 normalized to the value (h2(0)) without 
any confinement. For three-dimensional confinement, D 3 
is the side length of a cubic box or the diameter of a sphere. 
D 2 is the side length of square cross-section or the 
diameter of circular cross-section of an infinite tube for 
two-dimensional confinement. D1 is the gap height 
between two parallel infinite plates for one-dimensional 
confinement. In the figure the confinement size Dj has 
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Figure l Convergence of the value of (h2(0)) of 1000 RW steps with 
increasing number of specimen walks 
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Figure 3 Comparison of (h2(c))/(h2(O)) as a function of 2go~D3 for 
RWs confined in cubic boxes (11) or spheres (0) of sizes D3 by Monte 
Carlo simulation to the analytical result of equation (3) (full curve) 

been normalized to twice the r.m.s, radius of gyration of 
the RW chain, i.e. Ro=[(h2(O))/6] 1/2. The decrease of 
(h2(c)) with tighter confinement is clearly shown. At 
very large values of (2Ro/Dj), i.e. very small values of D j, 
(h2(c)) approached a value of 0, (h2(0))/3 and 2(h2(0))/3 
for three-, two- and one-dimensional confinement 
respectively. 

According to the model of interchain segmental 
interaction, to be represented by a spherical reflecting wall 
of diameter D3, the value of (2Ro/Da) 3 will be 
proportional to the concentration of polymer chains in 
the solution if the chains do not interpenetrate each other. 
From Figure 2 it is seen that the major portion of the 
decrease of chain dimension with increasing 2Ro/Da takes 
place in the range of 0.I 7 < 2Ro/D 3 < 1.3. A comparison of 
the result of three-dimensional confinement with the 
analytical result of Huang and Qian 6 is shown in Figure 3. 
Good agreement is observed in the range of D 3 < 2x/~R o 
which supports the correctness of the analytical result: 

(h2(c)) = (h2(O))[1 - 2(3/2n) l/2taexp(- 3t2/2)] (3) 

t = D3/2(h2(O)) 1/2 
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Figure 2 Plots of (hZ(c))/(h2(O)) vs. 2Ro/D j for RWs confined in slits 
(~), tubes of square (IS]) and circular (C)) cross-sections and cubic boxes 
(11) and spheres (0) 

It should be pointed out here that, in the analytical 
treatment 6, the spherical reflecting wall is centred at each 
chain segment so that the confinement of the RW chain 
closely approximates a sphere as in Monte Carlo 
simulation only when t in equation (3) is much larger than 
unity. Outside this region the relation coot -a will no 
longer be valid because of the interpenetration of RW 
chains. This explains the discrepancy between equation 
(3) and the Monte Carlo result in the region D 3 > 2 ~ R  o. 

The components (h~(c)), (h2(c)) and (hi(c)) for RW 
confined in a cubic box of size Da all decreased with 
increasing values of 2Ro/D 3, and 

(h 2 (c)) ~- (h2(c)) ~- ( h2(c)) (4) 

For RW confined in an infinite tube of square cross- 
section of size D 2 the components in the confined 
directions (h2(c)) decreased with increasing 2Ro/D 2, 
while the component in the unconfined direction 
(h2(c)) ~-(h2(0))/3 was unaffected by the confinement in 
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the other directions. For  RW confined in a gap of height 
D 1 between two parallel infinite plates, only the 
component (h](c)) in the confined direction decreased 
with increasing 2R0/D~, while the components 
(h~ (c)) - (h2(0))/3 were unaffected by the confinement in 
the other direction. The change of (h2(c))/h2(O)) in the 
confined direction with increasing 2Ro/Di appeared to 
follow the same curve irrespective of the dimensionality of 
confinement, as shown in Figure 4. It is interesting to 
mention here the recent experimental finding of 
Maconnachie, Allen and Richards 9 that, on uniaxially 
stretching polystyrene of M,  = 1 x 105 at 120°C to draw 
ratios up to 1.9, the radius of gyration of the polymer coil 
in the direction perpendicular to deformation as 
determined by SANS is virtually unchanged. For  a RW 
chain confined in an infinite tube the mean square end-to- 
end distance parallel to the tube axis should, according to 
our result, approach <h2(0)>/3, which is in disagreement 
with the result of de Gennes from scaling arguments 5. 
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Figure 5 Plots of (h2(c)>/(h2(O)> vs. 2Ro/Dj for SAWs confined in 
cubic boxes (1), tubes (I-l) and slits (O) 

intersegmental interactions could be considered, followed 
the following relations: 

C O N F I N E D  SELF-AVOIDING WALK 

The same five-choice succeeding walk step on a cubic 
lattice was used for SAW with a hard core repulsion of the 
size of a lattice site. As the definition of a SAW requires 
that no lattice site is visited more than once, a check must 
be done before every following step of a SAW to ensure 
that this requirement is fulfilled. If the neighbouring site 
has been occupied, the probability of reaching it for the 
following step will be zero. The other four sites will be 
chosen with the same probability according to the 
sequence of pseudo-random numbers. In the case where 
more than one neighbouring site has been occupied by 
previous walk steps, the probability of the following step 
reaching the occupied sites was put equal to zero. In this 
way the walk must be abandoned if all five neighbouring 
sites have been occupied. 

We calculated first the mean square end-to-end 
distance of SAW of N steps without any confinement. For  
a collection of SAW of step number N =  30-450 each 
having 10-1000 specimen walks, the statistical averages of 
the square end-to-end distance, evaluated according to 
the method of Rosenbluth and Rosenbluth ~°, in which 
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Figure 4 Decrease of (h](c))/(h2(O)) with increasing 2Ro/D J for RWs 
confined in cubic boxes ( I ) ,  tubes ([7) and slits (O) 

(h2(0))  = 1.107N L194 for an athermal state (5) 

( h 2 ( 0 ) > -  1.732N 1"°°1 for a theta state (6) 

These results fit nicely with the predictions of other 
authors10,11. At the same time this led to confidence in our 
computer program for the generation of SAW. 

The same geometrical confinements as previously 
discussed for confined RW were considered for SAW, 
deleting only the cases of a confining sphere and a tube of 
circular cross-section for convenience of computation. 
Analytical solutions for the confined SAW are lacking at 
present. This makes Monte Carlo simulation even more 
attractive. When the walk reached a site close to the wall 
of confinement, the neighbouring lattice site on or beyond 
the wall was considered as if it were occupied already so as 
to simulate the confinement by the reflecting wall. The 
main results of confined SAW calculations are shown in 
Figure 5. 

It is apparent from Figure 5 that the change of square 
end-to-end distance of a SAW chain confined in a cubic 
box of decreasing size D 3 is similar to the case of a 
confined RW chain. The value of (h2(c)) decreased 
monotonically with increasing 2Ro/D3. However for a 
SAW chain confined in an infinite tube of square cross- 
section or in a gap between two parallel infinite plates 
there appeared a minimum in the value of ( h  2 (c))/(h2(O)> 
with decreasing Dj. The minimum value of 
(h2(c))/(h2(O)> for a SAW chain confined in an infinite 
square tube was 0.5-0.6 at 2Ro/D 2 ,~ 1.6. Further decrease 
of D 2 led to an increase of (h  2 (c)>/(h2(O). This behaviour 
seems to be reasonable. If we consider the limiting case of 
D 2 being equal to twice the step length, there will be only 
one conformation possible for a SAW chain in such a thin 
confining tube, i.e. a fully extended chain with h2(c )=  N 2. 
For a SAW chain confined in a gap of height D1 between 
two parallel infinite plates the minimum of 
(h2(c)>/(h2(O)> with increasing 2Ro/D1 was not 
pronounced, the minimum value being around 0.9 at 
2Ro/D 1 between i to 2. Further increase of 2Ro/D1 led to a 
sharp increase of (h2(c)>/(h2(O)>. The increase of coil 
dimension in the unconfined directions with tighter 
confinement in the other directions is a manifestation of 
the intersegrnental repulsion as the segment density will 
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N, so v(2+m)=0,  which gives m = - 2 .  That is, 
limiting behaviour at small values of D 3 is given by 
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Figure 6 Plots of log<.h2(c)) vs. logDi for SAWs confined in cubic 
boxes (1), tubes (I-q) and slits (©). 800 walk steps. (Scales represent one 
decade difference) 

certainly increase with tighter confinement in the other 
directions. 

Following the scaling arguments of Wall et al.12 we put 

(h2(c)) oc ( h2(O))(Ro/D j) r" (7) 

As (h2(0)) ocN 2v, v=  a, we have 

(h2 (c))  ocN v(2 +m)D-" (8) 

For a SAW confined in a sphere of diameter Da, when 
D3"-+0 , ( h2 (c ) )  will approach zero, being independent of 

the 

( h 2 (C ) ) OC NOD 2 (9) 

For a SAW confined in a tube of diameter D2, when 
D2---*0, (h2(c))ocN 2, so v(2+m)=2,  which gives re=I ,  
and then 

(h2(c)) ocN2D2 4/a (10) 

in agreement with results of Wall et al. 12 and 
Whittingtont 3. For a SAW confined in a gap of height D1, 
when Dx--~O, (h2(c))ocN 3/2, so v(2+m)=2 ~, which gives 
m = ½, and then 

(h2(c)) ocNa/2D[ 1/2 (11) 

in agreement with the result of Whittington la. These 
limiting behaviours, (9)--(11), seem to be borne out by the 
results of Monte Carlo calculations with respect to the D r 
dependence, as shown in Figure 6. 
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